H(t)=-16t^2+75t+3

Simple and best practice solution for H(t)=-16t^2+75t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+75t+3 equation:



(H)=-16H^2+75H+3
We move all terms to the left:
(H)-(-16H^2+75H+3)=0
We get rid of parentheses
16H^2-75H+H-3=0
We add all the numbers together, and all the variables
16H^2-74H-3=0
a = 16; b = -74; c = -3;
Δ = b2-4ac
Δ = -742-4·16·(-3)
Δ = 5668
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5668}=\sqrt{4*1417}=\sqrt{4}*\sqrt{1417}=2\sqrt{1417}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-2\sqrt{1417}}{2*16}=\frac{74-2\sqrt{1417}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+2\sqrt{1417}}{2*16}=\frac{74+2\sqrt{1417}}{32} $

See similar equations:

| 25-(3+5)=2(x+8)+x | | z/5-4=21/3 | | -36+12d=2(d-3)+22 | | 2x+11=-7x-19 | | 3n-(1+7n)=26+5n | | 15g+.75=13g+.50 | | 3+7m=10m+3-3m | | 4=​2.5/t​​ | | 118=-2(-3-7r) | | 2x+7÷3=5 | | 1/6f-11/2=9/14 | | -1.3(x+2)=2.2(x-5.5)+5.3 | | 5z-z=40 | | 6+3(y+1)=4y+10 | | 3+9x-15=3x+6x-12 | | 4=1.04^x | | 80=9x-5(x-4) | | 9+5r=-4(6r+5) | | 2(x-1)/4=2(x+2)/7 | | 4(x-3)+2=-10+4x | | (2x+7/3)=5 | | 75=23^x | | -13x-3x=-6x+8 | | 37=5x^2-2x | | -10x6=-7x+-9 | | 5(8+9x)=2(x-23 | | 2.7b=3 | | x-9=2/3x | | -(3x-24)=3 | | 4(x-9.8)=4x+4 | | 9-2x=1-6x | | 3÷a=2.7 |

Equations solver categories